Model-updating for self-adjoint quadratic eigenvalue problems

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Model-updating for self-adjoint quadratic eigenvalue problems

This paper concerns quadratic matrix functions of the form L(λ) = Mλ2 +Dλ+K where M,D,K are Hermitian n× n matrices with M > 0. It is shown how new systems of the same type can be generated with some eigenvalues and/or eigenvectors updated and this is accomplished without “spill-over” (i.e. other spectral data remain undisturbed). Furthermore, symmetry is preserved. The methods also apply for H...

متن کامل

A New Model Updating Method for Quadratic Eigenvalue Problems. II

In this paper, we continue our paper [7] to develop an efficient numerical algorithm for the finite element model updating of quadratic eigenvalue problems (QEPs). This model updating of QEPs is proposed to incorporate the measured model data into the finite element model to produce an adjusted finite element model on the mass, damping and stiffness that closely match the experimental modal dat...

متن کامل

A New Model Updating Method for Quadratic Eigenvalue Problems

Finite element model updating of quadratic eigenvalue problems (QEPs) is proposed by Friswell, Inman and Pilkey 1998, to incorporate the measured model data into the finite element model to produce an adjusted finite element model on the damping and stiffness that closely match the experimental modal data. In this paper, we mainly develop an efficient numerical method for the finite element mod...

متن کامل

Quadratic Inverse Eigenvalue Problems, Active Vibration Control and Model Updating

This paper presents a brief review of recent developments on quadratic inverse eigenvalue problem with applications to active vibration control and finite element model updating.

متن کامل

Diagonalizable Quadratic Eigenvalue Problems

A system is defined to be an n× n matrix function L(λ) = λ2M + λD +K where M, D, K ∈ Cn×n and M is nonsingular. First, a careful review is made of the possibility of direct decoupling to a diagonal (real or complex) system by applying congruence or strict equivalence transformations to L(λ). However, the main contribution is a complete description of the much wider class of systems which can be...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Linear Algebra and its Applications

سال: 2008

ISSN: 0024-3795

DOI: 10.1016/j.laa.2007.12.023